Chapters 14 and 15 key

CHAPTERS 14 \& 15
CHAPTER 14 CONTINUED:

TERM	DEFINITION	IMAGE
EQUIVALENCE POINT	The \# of OH^{-} ions is equal to the \# of H^{+}ions	
INDICATOR	Dye that Changes Color depending on pH.	
END POINT	Point @ phich the phicu which thenges color chunges on depending pit.	
$\begin{gathered} \text { STRONG ACID/ } \\ \text { BASE } \end{gathered}$	will Completely jonize in water	
WEAK ACID. BASE	usually have to accept a H^{+}ion from $\mathrm{H}_{2} \mathrm{O}$ to produc an OH^{-}ion.	$\mathrm{H}_{2} \mathrm{O}^{+} \xrightarrow{\mathrm{O}} \mathrm{HO}+$
ACIDIC SOLUTION	concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$is greater than OH^{-}concentration	$\mathrm{H}_{3} \mathrm{O}^{+}>\mathrm{OH}^{-}$
BASIC SOLUTION		

BUFFER SOLUTION	Concentration Of OH is larger than $\mathrm{H}_{3} \mathrm{O}^{+}$concen. resists Changes i n ply when small amounts of Acids or bases are added. Stop
$\mathrm{PH}=\varnothing$	

ILLUSTRATE A PH SCALE BELOW:

MATH:

1. CALCULATE THE POH OF AN ACIDIC SOLUTION WITH AN HBO + OF $1.456 \times 10^{\wedge}-15$

$$
\begin{gathered}
P H=-\log \left[1.456 \times 10^{-15}\right] \\
P H=-15.16 \\
14=P H+P O H \\
P O H=14-P H \\
14-15.16 \\
P O H=-1.16
\end{gathered}
$$

2. DETERMINE THE PH OF AN ACIDIC SOLUTION WITH AN OH
10.3

$$
\begin{aligned}
& P O H=-\log [O H] \\
& P O H=-\log \left[0.2314 \times 10^{-3}\right] \\
& P O H=3.635 \\
& 14=P O H+P H \\
& P H=14-P O H \\
& 14-3.635
\end{aligned}
$$

CHAPTER 15:

1. Rate of Chemical reaction is a MEASURE OF HOW FAST A REACTION PROCEEDS.
2. DESCRIBE THE COLLISON THEORY:
a. Chemical reactions occur Through COLLISIONS.
b. FACTORS THAT AFFECT HOW MANY COLLISIONS
c. OCCUR IN A FIXED PERIOD:
i. Activation energy
ii. Orientation.
iii. Temperature
iv. Concentration
V. Catalyst.
3. FILL IN THE TABLE BELOW:

TERM	DEFINITION	LMAGE		
ACTIVATION	Minimum amount			
ENERGY	OF energy			
	needed to			
break bonds between			\quad	atoms of reactents
:---				
ORIENTATION				

MATH:

1. WHAT IS THE KC FOR THE FOLLOWING REACTION AT EQUILIBRIUM IF THE CONCENTRATIONS ARE AS FOLLOWED: $\mathrm{H}=0.200 \mathrm{M}, \mathrm{I} 2=0.300 \mathrm{M}, \mathrm{AND} \mathrm{HI}=2.05 \mathrm{M}$?

$$
\begin{aligned}
& \text { a. FORMULA: } \mathrm{H} 2+12<\cdots-\cdots 2 \mathrm{HI} \\
& \mathrm{H}-2 \quad \mathrm{H}-2 \\
& K_{C}=\frac{\left[\text { Product } \frac{T^{-2}}{-2}\right.}{[\text { reactants }]}=\frac{[C]^{I-2}[D]^{2}}{[A]^{a}[B]^{2}} b \\
& \begin{aligned}
{[2 \mathrm{HI}]^{2} } \\
{[\mathrm{H}]^{\prime}[I]^{\prime} }
\end{aligned}=\frac{[2.05]^{2}}{[0.200 \mathrm{~m}][0.300 \mathrm{~m}]} \begin{aligned}
\mathrm{KC} & =70.04 \mathrm{M}
\end{aligned}
\end{aligned}
$$

