CHAPTERS 14 & 15

CHAPTER 14 CONTINUED:

TERM	DEFINITION	MAGE
EQUIVALENCE POINT	The # of OH- ions is equal to the # of H+ ions	
INDICATOR	Dye that Changes Color depending on PH.	Blue Egreyn.
END POINT MA HITW MOITUJO	Point @ Endical which the Endical which the Endical changes color depending on Will Completely	STOP.
STRONG ACID/ BASE	Will Completely ionize in Water	Ot FH+
WEAK ACID. BASE	usually have to accept a Ht ion from HzO to Produce an OH-ion-	1-120 -> HU+
ACIDIC SOLUTION	Concentration of H30t is greater than OH-concentration	H30+> OH-
BASIC SOLUTION		To the second

Concentration	
larger than	OH > H30
resists Changes in Plt when	
	OF OH- is larger than Hzot concen. resists changes in PH when

ILLUSTRATE A PH SCALE BELOW:

Acid Neutral

MATH:

1. CALCULATE THE POH OF AN ACIDIC SOLUTION WITH AN H30+ OF 1.456X10^-15

2. DETERMINE THE PH OF AN ACIDIC SOLUTION WITH AN OH CONCENTRATION OF 0.2314X 10^-3.

POH= - log [OH]
POH= - log [OH]
POH= - log [O.2314 × 10-3]
POH= 3.635
POH+ PH
PH-14-POH
PH-14-3.635

CHAPTER 15:

1. Rute of a Chemical reaction proceeds.

2. DESCRIBE THE COLLISON THEORY:

- a. Chemical Yelichiums occur through collisions.
- b. FACTORS THAT AFFECT HOW MANY COLLISIONS
- c. OCCUR IN A FIXED PERIOD:
 - i. Activation energy
 - ii. Ovientation.

THE STHE KO FOR THE FOLLOWING BRACTION AT

iv. CONCEN + Vation DOE D = 21 M DOS D = H

V. Cutalyst.

3. FILL IN THE TABLE BELOW:

TERM	DEFINITION	IMAGE
ACTIVATION ENERGY	Minimum amount OF energy needed to break bonds be atoms of re	etween activity.
ORIENTATION	2 2	

	Atoms must	
	align properly + break + Form bonds-	€)→<6
CATALYST # 21 # 21	Provides on alternative pathway wl lower activation	energy
CHEMICAL EQUILIBRIUM HOUGHELA	No further change in Concentrations of reactions	Parel
REVERSIBLE REACTION	Have a forward + reverse reaction	C. OCCUR IN A

MATH:

1. WHAT IS THE KC FOR THE FOLLOWING REACTION AT EQUILIBRIUM IF THE CONCENTRATIONS ARE AS FOLLOWED: H= 0.200 M, I2= 0.300M, AND HI= 2.05M?